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Abstract

In this paper, we develop discontinuous Galerkin (DG) methods based on non-polynomial approximation spaces for
numerically solving time dependent hyperbolic and parabolic and steady state hyperbolic and elliptic partial differential
equations (PDEs). The algorithm is based on approximation spaces consisting of non-polynomial elementary functions
such as exponential functions, trigonometric functions, etc., with the objective of obtaining better approximations for spe-
cific types of PDEs and initial and boundary conditions. It is shown that L2 stability and error estimates can be obtained
when the approximation space is suitably selected. It is also shown with numerical examples that a careful selection of the
approximation space to fit individual PDE and initial and boundary conditions often provides more accurate results than
the DG methods based on the polynomial approximation spaces of the same order of accuracy.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

When the discontinuous Galerkin (DG) method [11] is used to solve partial differential equations (PDEs),
the piecewise polynomial space is the commonly chosen finite element approximation space. However, for
some PDEs and initial/boundary conditions, piecewise polynomials may not provide the best approximation
to the solution. A major advantage of the DG method is its flexibility with the finite element approximation
space. Essentially any linear space can be used as the local approximation space, and the approximation space
can vary from element to element and also for different time t. This flexibility comes from the fact that we do
not need to enforce any continuity at the element interfaces. Traditional continuous finite element methods
certainly do not have this flexibility. In this paper, we explore this flexibility and propose the use of spaces
based on non-polynomial elementary functions such as exponential functions, trigonometric functions etc.,
with the objective of obtaining better approximations to specific types of PDEs and initial/boundary
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conditions. It is shown that as long as the approximation space is suitably selected, we can obtain similar L2

stability and error estimates as for the piecewise polynomial space.
We now mention some related work in the literature. In [5], Cockburn et al. propose the use of the locally

divergence-free polynomial space in the DG method to solve the Maxwell equations and they achieve better
results compared to the DG method based on the classical piecewise polynomial space Pk, see also related
work in [16–18]. However, the locally divergence-free polynomial space is still based on polynomials. In this
paper we intend to focus on non-polynomial spaces in the DG method. Another line of related work is the
solution of singular perturbation problems by using exponentially fitted schemes, see for example the work
of Kadalbajoo and Patidar [15] and of Reddy and Chakravarthy [19]. We also refer to [2] in which non-poly-
nomial spaces are used in local essentially non-oscillatory (ENO) reconstructions for solving hyperbolic con-
servation laws.

The boundary layer and highly oscillatory problems are examples that the polynomial space does not make
a good approximation if the mesh is coarse. For the boundary layer problems, the slope of the solution near
the boundary is very large (Fig. 1.1, left), which is better approximated by exponential functions rather than
by polynomials. For the highly oscillatory problems (Fig. 1.1, right), the solution is better approximated by
trigonometric functions. It is intuitive that an exponential-function space should be used for good approxima-
tion to solutions with boundary layers, and a trigonometric-function space should be used to the highly oscil-
latory problems. Based on this intuition, we identified suitable approximation spaces, and studied L2 stability
for the DG method based on these spaces. It can also be proven that, if the exact solution is smooth enough,
the rate of convergence is the same as the dimension of the local approximation space. Similar results can be
obtained when the DG method based on these two spaces is applied to other problems.

In the proposed modified DG method, rather than keeping the approximation spaces fixed, we allow time-
varying approximation spaces. These spaces are indexed by parameters and the parameters are adjusted at
each time-step according to the numerical solution of the last time-step. We propose methods to automatically
adjust the parameters so that the approximation spaces can better fit the underlying solution. Numerical tests
indicate that these methods do find the best-fitting parameters and can yield better results compared to the
polynomial approximation space.

This paper is organized as follows. In Section 2, we give a brief review about the DG method. In Section 3,
approximation spaces different from the polynomial space are introduced. Criteria for selecting suitable
approximation spaces are given, and approximation results are presented for spaces satisfying these criteria.
In Section 4, the method of using time-varying approximation spaces in the DG method, which is called the
modified DG method, is proposed, and two methods for adjusting the parameters in the basis functions of the
approximation spaces are presented. In the same section, theoretical results of L2-stability as well as error esti-
mates of the proposed DG method based on non-polynomial approximation spaces are presented. Section 5
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Fig. 1.1. Examples of solutions to the boundary layer problem (left) and the highly oscillatory problem (right).
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consists of numerical results showing the accuracy of the modified DG method. Concluding remarks are given
in Section 6. In Appendix A, we give the verification that some of the approximation spaces used in this paper
do satisfy the criteria required in the proof of the approximation results in Section 3.
2. The DG method

We will only briefly review the DG method here for solving hyperbolic problems. First, consider the one-
dimensional conservation law
ut þ f ðuÞx ¼ 0. ð2:1Þ

We denote the mesh by Ij ¼ ½xj�1

2
; xjþ1

2
� for j = 1, . . . , N, with the center of the cell denoted by xj ¼ 1

2
ðxj�1

2
þ xjþ1

2
Þ

and the size of each cell by Dxj ¼ xjþ1
2
� xj�1

2
. We will denote Dx = maxjDxj and will assume a regular mesh

which has a bounded ratio between the largest and the smallest Dxj. If we multiply (2.1) by an arbitrary test
function v(x), integrate over the interval Ij, and integrate by parts, we obtain the weak formulation
Z

Ij

utvdx�
Z

Ij

f ðuÞvx dxþ f ðujþ1
2
Þvjþ1

2
� f ðuj�1

2
Þvj�1

2
¼ 0. ð2:2Þ
Here ujþ1
2
¼ uðxjþ1

2
Þ. We replace both the solution u and the test function v by U and V, which are in the

approximation space Vh. For standard DG method, Vh is taken as the space of piecewise polynomials
V h ¼ fv : vjIj
2 P kðIjÞ; j ¼ 1; . . . ;Ng; ð2:3Þ
where Pk(I) denotes the space of polynomials in an interval I of degree at most k.
The DG method is then given by the following: Find U(Æ, t) 2 Vh such that
Z

Ij

U tV dx�
Z

Ij

f ðUÞV x dxþ dfðUÞjþ1
2
V �jþ1

2
� dfðUÞj�1

2
V þ

j�1
2
¼ 0 ð2:4Þ
for all test functions V 2 Vh. The ‘‘numerical flux’’ dfðUÞjþ1
2
¼ f̂ ðU�jþ1

2
;Uþ

jþ1
2
Þ is chosen to be a monotone flux for

the scalar case, and to be a numerical flux based on exact or approximate Riemann solvers for the system case.
Notice that we use V� and V+ to denote the left and right limits of V, respectively, at the interface where V is
discontinuous. The resulting method of lines ODE is then discretized by the nonlinearly stable high order
TVD Runge–Kutta methods in [20,12].

For more details of the DG method, we refer the reader to the series of papers of Cockburn and Shu [7–9],
Cockburn et al. [6,4], the lecture notes [3], and the review paper [11].

For the convection–diffusion problems
ut þ f ðuÞx ¼ ðaðu; xÞuxÞx; ð2:5Þ

we use the local discontinuous Galerkin (LDG) method [10]. In the LDG method, local auxiliary variables are
introduced and second order derivatives are converted to first order derivatives using those auxiliary variables
which represent first order derivatives of the solution. The usual DG procedure is then applied and suitable
numerical fluxes are chosen for stability and convergence of the scheme. The auxiliary variables can be locally
eliminated thus they do not increase the size of the numerical system or pose global storage problem. We will
not review the details of the LDG method here to save space and refer the reader to the papers of Cockburn
and Shu [10,11].
3. Non-polynomial approximation spaces

In the standard DG method, the piecewise polynomial space (2.3) is used as the finite element space (both
the trial space and the test space). However, the DG method does provide the flexibility of using other non-
polynomial finite element spaces. The motivation to use non-polynomial finite element spaces is to obtain
better approximations for specific solutions of PDEs, such as the boundary layer solutions and oscillatory
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solutions in Fig. 1.1, for which exponential/trigonometric functions instead of polynomials as basis func-
tions for the new approximation spaces are expected to yield better numerical results because these func-
tions themselves can approximate the exact solutions better than polynomials. However, some criteria
are needed for the choice of basis functions of the non-polynomial finite element spaces, in order for those
spaces to have the same approximation rates as those of polynomial finite element spaces of the same
dimension.

3.1. One-dimensional case

We first consider the one-dimensional case. The following are examples of possible non-polynomial finite
element spaces in one dimension.

� The exponential space I:
EkðaÞ ¼ v : vjIj
2 spanfeajðx�xjÞ; eajðx�xjÞðx� xjÞ; . . . ; eajðx�xjÞðx� xjÞkg; x 2 Ij

n o
. ð3:1Þ
� The exponential space II:
�EkðaÞ ¼ v : vjIj
2 spanfeajðx�xjÞ; ðx� xjÞ; . . . ; ðx� xjÞkg; x 2 Ij

n o
. ð3:2Þ
� The trigonometric polynomial space:
T 1ðaÞ ¼ v : vjIj
2 spanf1; sin ajðx� xjÞg; x 2 Ij

n o
;

T 2ðaÞ ¼ v : vjIj
2 spanf1; sin ajðx� xjÞ; cos ajðx� xjÞg; x 2 Ij

n o ð3:3Þ
with apparent definition for the general Tk(a) space.

We would like to choose non-polynomial finite element spaces which have the same approximation rates as
those of polynomial finite element spaces of the same dimension. The criteria to achieve this purpose are sum-
marized in the following proposition.

Proposition 3.1. Assume {v0, v1, . . . , vk} is a local basis of the space Vh in cell Ij. If there are constants ail and bi

independent of Dxj and satisfying aii 6¼ 0 such that
viðxÞ �
Xk

l¼i

ailðx� xjÞl
�����

����� 6 biðDxjÞkþ1 8x 2 Ij; i ¼ 0; . . . ; k; ð3:4Þ
then for any function u(x) 2 Hk+1(Ij), there exist vh 2 Vh and a constant C independent of Dxj such that
jvhðxÞ � uðxÞj 6 CkukHkþ1ðIjÞðDxjÞkþ1=2 8x 2 Ij. ð3:5Þ
Proof. Let T be the Taylor expansion operator at the point xj into the standard piecewise polynomial space
Pk. We have
TuðxÞ ¼
Xk

l¼0

clðx� xjÞl;
where cl ¼ 1
l! u
ðlÞðxjÞ. Let
A ¼

a00 a01 � � � a0k

0 a11 � � � a1k

� � � � � � � � � � � �
0 0 � � � akk

0BBB@
1CCCA; b ¼

b0

b1

� � �
bk

0BBB@
1CCCA; c ¼

c0

c1

� � �
ck

0BBB@
1CCCA; p ¼

1

x� xj

� � �
ðx� xjÞk

0BBB@
1CCCA.
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Let f ðxÞ ¼
Pk

i¼0ðuðiÞðxÞÞ
2, we have
Z

Ij

f ðxÞdx� Dxjf ðxjÞ
�����

����� ¼
Z

Ij

Z x

xj

f 0ðtÞdt dx

�����
����� 6 Dxj

Z
Ij

jf 0ðtÞjdt
and also
Z
Ij

jf 0ðxÞjdx 6 2
Xk

i¼0

Z
Ij

juðiÞðxÞuðiþ1ÞðxÞjdx 6
Xk

i¼0

Z
Ij

ðuðiÞðxÞÞ2 dxþ
Xk

i¼0

Z
Ij

ðuðiþ1ÞÞ2 dx 6 2kuk2
Hkþ1ðIjÞ.
Therefore
DxjcTc ¼ Dxj

Xk

i¼0

1

i!
uðiÞðxjÞ

� �2

6 Dxj

Xk

i¼0

ðuðiÞðxjÞÞ2 ¼ Dxjf ðxjÞ 6
Z

Ij

f ðxÞdxþ
Z

Ij

f ðxÞdx� Dxjf ðxjÞ
�����

�����
6 ð1þ 2DxjÞkuk2

Hkþ1ðIjÞ.
Now let d = (AT)�1c and vh = dTv. We have
jvh � Tuj ¼ jdTv� cTpj ¼ jcTA�1ðv� ApÞj 6
ffiffiffiffiffiffiffi
cTc
p

kA�1kkv� Apk

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dxj
ð1þ 2DxjÞkuk2

Hkþ1ðIjÞ

s
kA�1kkbkðDxjÞkþ1

6 CkukHkþ1ðIjÞðDxjÞkþ1=2
;

where in the second last inequality above we have used the assumption (3.4). The unidentified norms are all L2

norms. C here and below is a generic constant independent of u and Dx, which may not have the same value at
different locations.

We also notice that
ku� TukL1ðIjÞ ¼ sup
x2Ij

Z x

xj

uðkþ1ÞðtÞ ðx� tÞk

k!
dt

�����
����� 6 sup

x2Ij

Z x

xj

juðkþ1ÞðtÞj2dt

 !1=2 Z x

xj

ðx� tÞk

k!

�����
�����
2

dt

0@ 1A1=2

6 CjujHkþ1ðIjÞðDxjÞkþ1=2.
Finally we have, for all x 2 Ij,
juðxÞ � vhðxÞj 6 juðxÞ � TuðxÞj þ jvhðxÞ � TuðxÞj 6 CjujHkþ1ðIjÞðDxjÞkþ1=2 þ CkukHkþ1ðIjÞðDxjÞkþ1=2

6 CkukHkþ1ðIjÞðDxjÞkþ1=2
and the proof is now complete. h

Next, we estimate the approximation rate in the L2 norm.

Proposition 3.2. Assume Vh is a space satisfying the condition (3.4) in Proposition 3.1 in each cell Ij 2 X. Let Ph

be the L2 projection operator into the space Vh. For any function u(x) 2 Hk+1(X), there exists a constant C such

that:
kP hu� ukL2ðXÞ 6 CkukHkþ1ðXÞðDxÞkþ1. ð3:6Þ
Proof. We choose the same vh as that in Proposition 3.1. Squaring both sides of (3.5) and then integrating in
the cell Ij, we obtain
ku� vhk2
L2ðIjÞ 6 Ckuk2

Hkþ1ðIjÞðDxjÞ2kþ2 8j.
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Therefore,
Table
L2- an

N

10
20
40
80

160

10
20
40
80

160

10
20
40
80

160
kP hu� uk2
L2ðXÞ 6 ku� vhk2

L2ðXÞ ¼
X

j

ku� vhk2
L2ðIjÞ 6 C

X
j

kuk2
Hkþ1ðIjÞðDxjÞ2kþ2

6 Ckuk2
Hkþ1ðXÞðDxÞ2kþ2.
Taking square roots on both sides finishes the proof. h

We verify in Appendix A that the three spaces (3.1)–(3.3) satisfy the condition (3.4) in Proposition 3.1.
We now show numerical results in Tables 3.1 and 3.2 for the approximations to u(x) = ex and to

u(x) = sin(x) respectively. From the results in these two tables, we can see that we obtain the optimal order
of the approximation rate (equal to the dimension of the local approximation space) when using the approx-
imation spaces Ek(1) and Tk(1) (k = 1, 2), where, e.g., Ek(1) refers to aj = 1 for all j, to approximate general
functions. It can be seen that the approximation results are comparable to those obtained by the usual piece-
wise polynomial approximation for general functions. Not surprisingly, we obtain the exact solutions modulo
round-off errors when approximating specific functions tailored to the specific approximation spaces.
3.2. Multi-dimensional case

In this subsection we generalize the approximation spaces to multi-dimensions. We concentrate our atten-
tion on the two-dimensional case. The following are examples of possible non-polynomial finite element spaces
in two dimension.

� The exponential space:
Ekða; bÞ ¼
n

v : vjK 2 span
n

eaK ðx�xK ÞþbK ðy�yK Þ; eaK ðx�xK ÞþbK ðy�yK Þðx� xKÞ;eaK ðx�xK ÞþbK ðy�yK Þðy � yKÞ;

eaK ðx�xK ÞþbK ðy�yK Þðx� xKÞ2; eaK ðx�xK ÞþbK ðy�yK Þðx� xKÞðy � yKÞ; eaK ðx�xK ÞþbK ðy�yK Þðy � yKÞ
2
; . . . ;

eaK ðx�xK ÞþbK ðy�yK Þðx� xKÞk; . . . ; eaK ðx�xK ÞþbK ðy�yK Þðy � yKÞ
k
o
; ðx; yÞ 2 K

o
. ð3:7Þ
3.1
d L1-errors of approximation to ex (0 6 x 6 p). Uniform mesh with N cells

Exponential space E1(1) Trigonometric space T1(1)

L2-error L1-error L2-error Order L1-error Order

1.42E�14 2.25E�14 5.98E�02 1.38E�01
9.26E�14 2.15E�13 1.50E�02 2.00 3.63E�02 1.93
7.64E�14 1.85E�13 3.76E�03 2.00 9.31E�03 1.96
6.69E�13 1.53E�12 9.39E�04 2.00 2.36E�03 1.98
8.37E�13 1.93E�12 2.35E�04 2.00 5.94E�04 1.99

Exponential space E2(1) Trigonometric space T2(1)

L2-error L1-error L2-error Order L1-error Order

8.06E�14 1.76E�13 3.18E�03 6.35E�03
5.90E�13 1.56E�12 3.96E�04 3.01 8.62E�04 2.88
1.10E�11 2.70E�11 4.99E�05 2.99 1.12E�04 2.94
1.39E�10 3.48E�10 6.24E�06 3.00 1.44E�05 2.96
8.78E�11 2.23E�10 7.80E�07 3.00 1.81E�06 2.99

Polynomial space P1 Polynomial space P2

L2-error Order L1-error Order L2-error Order L1-error Order

5.98E�02 1.34E�01 1.59E�03 3.26E�03
1.50E�02 2.00 3.58E�02 1.90 1.99E�04 3.00 4.38E�04 2.90
3.76E�03 2.00 9.26E�03 1.95 2.49E�05 3.00 5.67E�05 2.95
9.39E�04 2.00 2.35E�03 1.98 3.12E�06 3.00 7.21E�06 2.98
2.35E�04 2.00 5.93E�04 1.99 3.90E�07 3.00 9.09E�07 2.99



Table 3.2
L2- and L1-errors of approximation to sinx (0 6 x 6 p). Uniform mesh with N cells

N Exponential space E1(1) Trigonometric space T1(1)

L2-error Order L1-error Order L2-error Order L1-error Order

10 9.19E�03 1.34E�02 4.60E�03 6.52E�03
20 2.30E�03 2.00 3.33E�03 2.01 1.15E�03 2.00 1.65E�03 1.98
40 5.76E�04 2.00 8.31E�04 2.00 2.88E�04 2.00 4.13E�04 2.00
80 1.44E�04 2.00 2.07E�04 2.01 7.20E�05 2.00 1.03E�04 2.00

160 3.60E�05 2.00 5.18E�05 2.00 1.80E�05 2.00 2.58E�05 2.00
320 9.00E�06 2.00 1.30E�05 1.99 4.50E�06 2.00 6.46E�06 2.00

Exponential space E2(1) Trigonometric space T2(1)

L2-error Order L1-error Order L2-error L1-error

10 3.45E�04 4.76E�04 2.37E�14 1.65E�14
20 4.32E�05 3.00 5.84E�05 3.03 3.36E�15 1.67E�15
40 5.41E�06 3.00 7.24E�06 3.02 3.00E�13 2.21E�13
80 6.76E�07 3.00 9.01E�07 3.01 1.52E�12 2.17E�12

160 8.45E�08 3.00 1.12E�07 3.01 1.51E�13 1.11E�13
320 1.07E�08 2.98 1.68E�08 2.74 2.64E�11 3.79E�11

Polynomial space P1 Polynomial space P2

L2-error Order L1-error Order L2-error Order L1-error Order

10 4.60E�03 6.54E�03 1.22E�04 1.60E�04
20 1.15E�03 2.00 1.65E�03 1.99 1.53E�05 3.00 2.02E�05 2.99
40 2.88E�04 2.00 4.13E�04 2.00 1.91E�06 3.00 2.53E�06 3.00
80 7.20E�05 2.00 1.03E�04 2.00 2.39E�07 3.00 3.17E�07 3.00

160 1.80E�05 2.00 2.58E�05 2.00 2.99E�08 3.00 3.96E�08 3.00
320 4.50E�06 2.00 6.46E�06 2.00 3.74E�09 3.00 4.95E�09 3.00
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� The trigonometric polynomial space:
T 1ða; bÞ ¼ v : vjK 2 span 1; sin aKðx� xKÞ; sin bKðy � yKÞf g; ðx; yÞ 2 K
� �

T 2ða; bÞ ¼ v : vjK 2 span 1; sin aKðx� xKÞ; sin bKðy � yKÞ; cos aKðx� xKÞ;f
�
sin aKðx� xKÞ sin bKðy � yKÞ; cos aKðy � yKÞg; ðx; yÞ 2 Kg

ð3:8Þ
with apparent definition for the general Tk(a, b) space.

Here K is a two-dimensional cell with the center at the point (xK, yK).
Similar propositions as those in the one-dimensional case can be obtained for multi-dimensions. We will

again concentrate on the two-dimensional case.

Proposition 3.3. Assume {vmn, m P 0, n P 0, m + n 6 k} is a local basis of the space Vh in cell K. If there are
constants amnpq and bmn independent of Dx = diam(K) and satisfying amnmn 6¼ 0 such that, for all x, y 2 K,

m, n P 0, m + n 6 k,
vmn �
X

pPm;qPn;pþq6k

amnpqðx� xKÞpðy � yKÞ
q

�����
����� 6 bmnðDxÞkþ1

; ð3:9Þ
then for any function u 2Wk+1,1(K), there exist vh 2 Vh and a constant C independent of Dx such that:
jvhðx; yÞ � uðx; yÞj 6 CkukW kþ1;1ðKÞðDxÞkþ1 8ðx; yÞ 2 K. ð3:10Þ
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Proof. Let T be the Taylor expansion operator at the point (xK, yK) into the standard piecewise polynomial
space Pk. We have
Tuðx; yÞ ¼
X

p;qP0;pþq6k

cpqðx� xKÞpðy � yKÞ
q
;

where cpq ¼ 1
p!q!

o
p
xo

q
y uðxK ; yKÞ.

Let the tensors A=(amnpq)(k+1)·(k+1)·(k+1)·(k+1), b = (bmn)(k+1)·(k+1), c = (cpq)(k+1)·(k+1), v = (vmn)(k+1)·(k+1)

and p = (pmn)(k+1)·(k+1) with pmn = (x � xK)m(y � yK)n for m,n P 0, m + n 6 k. We define the operation ‘‘:’’ as
a product between tensors:
C : D ¼ ðci1i2...inÞ : ðdj1j2...jm
Þ ¼

P
j1...jm

ci1...in�mj1...jm
dj1...jm

 !
if n P m;

P
i1...im

ci1...in di1...injnþ1...jm

 !
otherwise.

8>>>>><>>>>>:

Notice that this is the usual inner product if the two tensors C and D are of the same order, and is the usual
matrix–vector product (or vector–matrix product) if C is a matrix and D is a vector (or if C is a vector and D is
a matrix). It is easy to check, just by the definition, that this operator satisfies the following associative and
distributive properties:

(1) C : (D : E) = (C : D) : E, if the order of D equals the sum of the orders of C and E;
(2) C : (D + E) = (C : D) + (C : E), if D and E are of the same order.

With this definition we obtain
c : c ¼
X

p;qP0;pþq6k

1

p!q!
op

xo
q
y uðxi; yjÞ

� �2

6

X
p;qP0;pþq6k

ðop
xo

q
y uðxi; yjÞÞ

2
6

X
p;qP0;pþq6k

jop
xo

q
y uðxi; yjÞj

 !2

6 kuk2
W kþ1;1ðKÞ.
Now we need a matrix d such that d : A = c. In fact, for this specific A, there exists a unique ‘‘inverse’’ tensor
�A such that d ¼ c : �A. We will show how to obtain this tensor �A in Appendix A. Also let vh = d : v. Now we
obtain
jvh � Tuj ¼ jd : v� c : pj ¼ jd : ðv� A : pÞj ¼ jc : �A : ðv� A : pÞj 6
ffiffiffiffiffiffiffiffiffi
c : c
p

k�Akkv� A : pk

6 kukW kþ1;1ðKÞk�AkkbkðDxÞkþ1
6 CkukW kþ1;1ðKÞðDxÞkþ1

;

where iv � A : pi and ibi refer to the vector L2 norm when the matrices v � A : p and b are regarded as a long
vector (that is, the square of the norm is the sum of squares of all the entries of the matrix), and k�Ak is the
associated operator norm.

We also notice that, by the property of the Taylor expansion,
ku� TukL1ðKÞ 6 CjujW kþ1;1ðKÞðDxÞkþ1.
Therefore we have, for all (x, y) 2 K,
juðx; yÞ � vhðx; yÞj 6 juðx; yÞ � Tuðx; yÞj þ jvhðx; yÞ � Tuðx; yÞj 6 CjujW kþ1;1ðKÞðDxÞkþ1 þ CkukW kþ1;1ðKÞðDxÞkþ1

6 CkukW kþ1;1ðKÞðDxÞkþ1.
Now the proof is complete. h

Next, we estimate the approximation rate in the L2 norm.
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Proposition 3.4. Assume Vh is a space satisfying the condition (3.9) in Proposition 3.3 in each cell K 2 X. Let Ph

be the L2 projection operator into the space Vh. For any function u 2Wk+1,1(X), there exists a constant C such

that
Table
L2- an

Nx · N

5 · 5
10 · 10
20 · 20
40 · 40
80 · 80
160 · 1

5 · 5
10 · 10
20 · 20
40 · 40
80 · 80
160 · 1

5 · 5
10 · 10
20 · 20
40 · 40
80 · 80
160 · 1
kP hu� ukL2ðXÞ 6 CkukW kþ1;1ðXÞðDxÞkþ1. ð3:11Þ
Proof. We choose the same vh as that in Proposition 3.3. Squaring both sides of (3.10) and then integrating in
the cell K, we obtain
ku� vhk2
L2ðKÞ 6 Ckuk2

W kþ1;1ðKÞðDxÞ2kþ4 8K.
Therefore,
kP hu� uk2
L2ðXÞ 6 ku� vhk2

L2ðXÞ ¼
X

K

ku� vhk2
L2ðKÞ 6 C

X
K

kuk2
W kþ1;1ðKÞðDxÞ2kþ4

6 CkukW kþ1;1ðXÞðDxÞ2kþ2.
Taking square roots on both sides finishes the proof. h

We verify in Appendix A that the two spaces (3.7) and (3.8) satisfy the condition (3.9) in Proposition 3.3.
We now show numerical results in Tables 3.3 and 3.4 for the approximations to u(x, y) = ex�2y and to

u(x, y) = sin(x) + sin(y) respectively. From the results in these two tables, we can see that we obtain the opti-
mal order k + 1 of the approximation rate when using the approximation spaces Ek(a, b) and Tk(a, b)
(k = 1, 2), to approximate general functions. It can again be seen that the approximation results are compa-
rable to those obtained by the usual piecewise polynomial approximation for general functions. Not surpris-
ingly, we obtain exact solutions when approximating specific functions tailored to the specific approximation
spaces.
3.3
d L1-errors of approximation to ex�2y (0 6 x, y 6 1). Uniform mesh with Nx · Ny cells

y Exponential space E1(1, �2) Trigonometric space T1(1, 1)

L2-error L1-error L2-error Order L1-error Order

4.65E�15 2.49E�14 7.95E�03 6.65E�02
5.57E�15 4.51E�14 2.00E�03 1.99 1.86E�02 1.84
4.66E�14 2.46E�13 5.01E�04 2.00 4.93E�03 1.92
1.43E�13 8.90E�13 1.25E�04 2.00 1.27E�03 1.96
3.80E�13 2.41E�12 3.13E�05 2.00 3.22E�04 1.98

60 2.27E�12 1.28E�11 7.84E�06 2.00 8.11E�05 1.99

Exponential space E2(1, � 2) Trigonometric space T2(1,1)

L2-error L1-error L2-error Order L1-error Order

8.30E�14 5.28E�13 4.05E�04 4.24E�03
2.97E�13 1.88E�12 5.11E�05 2.99 6.00E�04 2.82
4.39E�12 2.52E�11 6.40E�06 3.00 7.98E�05 2.91
2.57E�11 1.62E�10 8.00E�07 3.00 1.03E�05 2.95
5.55E�11 3.42E�10 1.00E�07 3.00 1.31E�06 2.98

60 9.71E�11 9.46E�10 1.25E�08 3.00 1.67E�07 2.97

Polynomial space P1 Polynomial space P2

L2-error Order L1-error Order L2-error Order L1-error Order

7.94E�03 6.63E�02 3.81E�04 3.95E�03
2.00E�03 1.99 1.86E�02 1.83 4.80E�05 2.99 5.61E�04 2.82
5.01E�04 2.00 4.93E�03 1.92 6.02E�06 3.00 7.47E�05 2.91
1.25E�04 2.00 1.27E�03 1.96 7.53E�07 3.00 9.65E�06 2.95
3.14E�05 1.99 3.22E�04 1.98 9.41E�08 3.00 1.23E�06 2.97

60 7.84E�06 2.00 8.11E�05 1.99 1.18E�08 3.00 1.54E�07 3.00



Table 3.4
L2- and L1-errors of approximation to sinx + siny (0 6 x, y 6 p). Uniform mesh with Nx · Ny cells

Nx · Ny Exponential space E1(1, 1) Trigonometric space T1(1, 1)

L2-error Order L1-error Order L2-error Order L1-error Order

5 · 5 1.94E�01 3.42E�01 4.58E�02 5.24E�02
10 · 10 4.99E�02 1.96 8.97E�02 1.93 1.15E�02 1.99 1.30E�02 2.01
20 · 20 1.26E�02 1.99 2.25E�02 2.00 2.89E�03 1.99 3.30E�03 1.98
40 · 40 3.15E�03 2.00 5.61E�03 2.00 7.22E�04 2.00 8.26E�04 2.00
80 · 80 7.88E�04 2.00 1.40E�03 2.00 1.81E�04 2.00 2.07E�04 2.00
160 · 160 1.97E�04 2.00 3.49E�04 2.00 4.51E�05 2.00 5.17E�05 2.00

Exponential space E2(1,1) Trigonometric space T2(1,1)

L2-error Order L1-error Order L2-error L1-error

5 · 5 2.06E�02 5.00E�02 3.13E�13 3.52E�13
10 · 10 2.65E�03 2.96 6.55E�03 2.93 3.97E�14 3.97E�14
20 · 20 3.33E�04 2.99 8.30E�04 2.98 5.88E�14 6.44E�14
40 · 40 4.17E�05 3.00 1.04E�04 3.00 5.18E�13 7.00E�13
80 · 80 5.21E�06 3.00 1.30E�05 3.00 2.46E�12 2.73E�12
160 · 160 6.52E�07 3.00 1.63E�06 3.00 4.00E�12 4.66E�12

Polynomial space P1 Polynomial space P2

L2-error Order L1-error Order L2-error Order L1-error Order

5 · 5 4.60E�02 5.25E�02 2.44E�03 2.48E�03
10 · 10 1.15E�02 2.00 1.31E�02 2.00 3.06E�04 3.00 3.21E�04 2.95
20 · 20 2.89E�03 1.99 3.30E�03 1.99 3.83E�05 3.00 4.05E�05 2.99
40 · 40 7.22E�04 2.00 8.26E�04 2.00 4.79E�06 3.00 5.07E�06 3.00
80 · 80 1.81E�04 2.00 2.07E�04 2.00 5.99E�07 3.00 6.34E�07 3.00
160 · 160 4.51E�05 2.00 5.17E�05 2.00 7.49E�08 3.00 7.93E�08 3.00
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4. Discontinuous Galerkin method with time-varying approximation spaces

For the one-dimensional conservation law (2.1), we will use the space Ek(a) (3.1) or Tk(a) (3.3) in Section 3
as the finite element space. However, we would like to adjust the parameters aj in these spaces for different time
steps. The numerical scheme is set up as follows:

1. Decide the initial parameters a0
j . We will calculate a0

j from the initial condition, using the same method for
the choice of the initial parameters as for later parameter adjustment, to be described in detail in Section
4.1.

2. When the numerical solution Un 2 V n
h is known at time step n, where V n

h is based on the choice of param-
eters an

j , use the DG or LDG method to obtain the preliminary numerical solution �Unþ1 2 V n
h for the next

time-step. This step is basically the same as that for DG or LDG method using the piecewise polynomial
space. The only difference is that we use a non-polynomial finite element space V n

h. For example, the DG
method for the conservation law (2.1) is: Find �U nþ1 in the non-polynomial finite element space V n

h such
that
Z

Ij

�U nþ1 � U n

Dt

� �
V dx�

Z
Ij

f ðU nÞV x dxþ dfðUnÞjþ1
2
V �jþ1

2
� dfðU nÞj�1

2
V þ

j�1
2
¼ 0 ð4:1Þ

holds for all test function V 2 V n
h. The choice of the numerical fluxes dfðUÞjþ1

2
is the same as that for

DG method based on the piecewise polynomial space. Notice that here we have used the forward Euler
time stepping as an example to demonstrate the algorithm. In actual calculation we would use higher
order TVD Runge–Kutta methods [20,12] which are convex combinations of the forward Euler
operator.
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3. Find the new parameters anþ1
j which can better fit the preliminary numerical solution �Unþ1 at the new time

step obtained from Step 2 above, hence the new finite element approximation space V nþ1
h . Again, this pro-

cedure will be described in detail in Section 4.1.
4. Use the L2-projection to transfer the preliminary numerical solution �U nþ1 2 V n

h to the numerical solution
U nþ1 2 V nþ1

h . Because the finite element space consists of discontinuous functions, the L2-projection can
be easily implemented locally. For example, when the cells do not change, we simply need to find the func-
tion U nþ1 2 V nþ1

h such that
Z
Ij

ðU nþ1ðxÞ � �U nþ1ðxÞÞeiðxÞdx ¼ 0; 0 6 i 6 k; ð4:2Þ

where ei(x), 0 6 i 6 k, form a basis of the new approximation space V nþ1
h . This involves only local, small

linear system solvers.
5. Repeat Steps 2, 3, and 4 above until we reach the final time, or the steady state.

4.1. Methods to adjust the parameters

We will concentrate our attention on the exponential approximation space Ek(a) defined in (3.1), and
describe our approach to find the parameters aj in the basis functions of Ek(a) to fit the numerical solution.
We determine the optimal aj (denote it by b) in each cell by fitting the numerical solution U(x) to the expo-
nential function cebðx�xjÞ on the cell Ij. In order to make the calculation easier, we choose to find the parameter
b to minimize the L2 difference between logjU(x)j and log jcebðx�xjÞj ¼ log jcj þ bðx� xjÞ when c and b can both
freely change, that is, we would like to find b such that
gðc; bÞ ¼
Z

Ij

ðlog jUðxÞj � log jcj � bðx� xjÞÞ2dx
is minimized. Taking og
ob ðc; bÞ and setting it to zero, we obtain
Z

Ij

ðlog jUðxÞj � log jcj � bðx� xjÞÞðx� xjÞdx ¼ 0. ð4:3Þ
This leads directly to
b ¼ 12

ðDxjÞ3
Z

Ij

ðx� xjÞ log jUðxÞjdx. ð4:4Þ
If UðxÞ 2 V n
h with the parameter an

j :
UðxÞ ¼ ean
j ðx�xjÞðu0 þ u1ðx� xjÞ þ � � � þ ukðx� xjÞkÞ; ð4:5Þ
then (4.4) becomes
anþ1
j ¼ b ¼ an

j þ
12

ðDxjÞ3
Z

Ij

log ju0 þ u1ðx� xjÞ þ � � � þ ukðx� xjÞkjdx; ð4:6Þ
where the integral can be computed by numerical quadratures.
Generally, we can also attempt to fit the numerical solution U(x) into an exponential-like function

eajðx�xjÞ
Pl

i¼0ðx� xjÞi for any l < k, but this will increase the difficulty of the calculation.
In Section 5.2 we will test the effectiveness of this method in identifying the parameter aj. We have also

tested a second method to determine the optimal aj (denote it again by b) in each cell by fitting the numerical
solution U(x) to the exponential function ebðx�xjÞðc0 þ c1ðx� xjÞ þ � � � þ ckðx� xjÞkÞ on the three cells Ij�1, Ij

and Ij+1. The advantage of this second method is that it sometimes gives more accurate parameters than
the first method based on our numerical experimental results. The disadvantage is that it requires more com-
putational time because of its nonlinearity. We will not present numerical results associated with this second
method to save space.



306 L. Yuan, C.-W. Shu / Journal of Computational Physics 218 (2006) 295–323
4.2. L2-stability and an error estimate in one dimension

We present in this subsection the theoretical results of the L2-stability for the general one-dimensional
scalar nonlinear conservation laws (2.1) and an error estimate for the linear case
ut þ cux ¼ 0; ð4:7Þ

where c is a constant.

Proposition 4.1 (L2-stability). Let uh be the solution of the DG method (2.4) for the one-dimensional scalar

nonlinear conservation law (2.1) based on a non-polynomial approximation space Vh. We have
kuhðT Þk2
L2 þHT ðuhÞ 6 kuhð0Þk2

L2 ð4:8Þ

with HT(uh) P 0. In particular, if the PDE (2.1) is the linear equation (4.7), then
HT ðuhÞ ¼ jcj
Z T

0

XN

j¼1

½uhðtÞ�2jþ1=2dt; where ½uh�jþ1=2 ¼ uhðxþjþ1=2Þ � uhðx�jþ1=2Þ.
The proof is identical to that for the polynomial approximation space case [14]. In fact, no special prop-
erty of the approximation space Vh is used in the proof of the stability result in [14]. We do remark, how-
ever, that similar result can be proved for the fully discrete DG method only for special classes of time
discretizations [14]. If the stability holds for fully discrete DG method based on a fixed approximation space
Vh, it also holds for our modified DG method with the approximation space V n

h changing with each time
step, since we use the L2 projection to transfer the preliminary numerical solution in the old space V n

h to
the new space V nþ1

h .

In order to prove an error estimate, we need the following approximation property of the finite element
space Vh.

Lemma 4.2 (Approximation result). Assume Vh is a space satisfying the condition (3.4) in Proposition 3.1 in

each cell Ij 2 X. Let Ph be the L2 projection operator into the space Vh. For any function u(x) 2 Hk+1(X), there

exists a constant C such that
P huðx�jþ1=2Þ � uðxjþ1=2Þ
��� ��� 6 CðDxÞkþ1=2kukHkþ1ðIj[Ijþ1Þ.
Proof. We choose the same vh as that in Proposition 3.1 and will use the same notations. We can decompose u
as
u ¼ vh þ ðu� vhÞ.

Since Ph(vh) = vh, we have
jP hu� uj 6 jP hðu� vhÞj þ ju� vhj.

From Proposition 3.1, we know ju� vhj 6 CkukHkþ1ðIjÞðDxjÞkþ1=2 for all x 2 Ij. Now let
P hðu� vhÞ ¼
Xk

i¼0

rivi.
From the definition of the L2-projection, we have
Z
Ij

ðP hðu� vhÞ � ðu� vhÞÞvldx ¼ 0 0 6 l 6 k.
which can be written out as
Z
Ij

Xk

i¼0

ðriðDxjÞiÞ
viðxÞ
ðDxjÞi

vlðxÞ
ðDxjÞl

dx ¼
Z

Ij

ðu� vhÞ
vlðxÞ
ðDxjÞl

dx; 0 6 l 6 k
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or equivalently
Z 1=2

�1=2

Xk

i¼0

ðriðDxjÞiÞ
~viðyÞ
ðDxjÞi

~vlðyÞ
ðDxjÞl

dy ¼
Z 1=2

�1=2

ðu� vhÞ
~vlðyÞ
ðDxjÞl

dy; 0 6 l 6 k; ð4:9Þ
where y ¼ x�xj

Dxj
and ~viðyÞ ¼ viðxÞ. (4.9) can be concisely written as
MDxj R ¼ h;
r

0 1
h

0 1

where MDxj ¼ ðmliÞ with mli ¼

R 1=2

�1=2
~viðyÞ
ðDxjÞi

~vlðyÞ
ðDxjÞl

dy; R ¼
0

r1Dxj

. . .
rkðDxjÞk

BB@ CCA and h ¼
0

h1

. . .
hk

BB@ CCA with hl ¼
R 1=2

�1=2
ðu� vhÞ

~vlðyÞ
ðDxjÞl

dy. By (3.4), which implies the boundedness of ~vlðyÞ
ðDxjÞl

, and (3.5), we easily obtain
jhlj 6 CkukHkþ1ðIjÞðDxjÞkþ1=2
; 0 6 l 6 k;
hence khk1 6 CkukHkþ1ðIjÞðDxjÞkþ1=2. Again from (3.4), we observe
~viðyÞ
ðDxjÞi

� aiiyi

�����
����� 6 CDxj;
therefore the entries of the matrix MDxj can be written as
mli ¼
Z 1=2

�1=2

aiiyiallyldy þ
Z 1=2

�1=2

viðyÞ
ðDxjÞi

vlðyÞ
ðDxjÞl

� aiiyiallyl

 !
dy ¼ fli þ gliðDxjÞ;
where fli is independent of Dxj and jgli(Dxj)j 6 CDxj. That is, we have
MDxj ¼ F þ GðDxjÞ;
where F is independent of Dxj and is invertible (as it is the mass matrix of a local basis {a00, a11y,
a22y2, . . . , akkyk} with aii 6¼ 0), and iG(Dxj)i1 6 CDxj. MDxj itself is also always invertible for any Dxj, being
the mass matrix of a local basis of Vh. Now, considering again (3.4) and the implied boundedness of vlðxÞ

ðDxjÞl
,

we have
kP hðu� vhÞkL1ðIjÞ 6 CkRk1 ¼ CkM�1
Dxj

hk1 6 CkM�1
Dxj
k1khk1 6 CðDxjÞkþ1=2kukHkþ1ðIjÞkðF þ GðDxjÞÞ�1k1

6 CðDxjÞkþ1=2kukHkþ1ðIjÞkF
�1k1kðI þ F �1GðDxjÞÞ�1k1

6 CðDxjÞkþ1=2kukHkþ1ðIjÞkF
�1k1

1

1� kF �1GðDxjÞÞk1

6 CðDxjÞkþ1=2kukHkþ1ðIjÞkF
�1k1

1

1� kF �1k1CDxj
6 CðDxjÞkþ1=2kukHkþ1ðIjÞ.
When Dxj is suitably small, we now have
kP hu� ukL1ðIjÞ 6 kP hðu� vhÞkL1ðIjÞ þ ku� vhkL1ðIjÞ 6 CðDxjÞkþ1=2kukHkþ1ðIjÞ.
Finally, we obtain
jP huðx�jþ1=2Þ � uðxjþ1=2Þj 6 kP hu� ukL1ðIjÞ þ kP hu� ukL1ðIjþ1Þ

6 CðDxjÞkþ1=2kukHkþ1ðIjÞ þ CðDxjþ1Þkþ1=2kukHkþ1ðIjþ1Þ 6 CðDxÞkþ1=2kukHkþ1ðIj[Ijþ1Þ.
This finishes the proof. h

We are now ready to prove the following error estimate.
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Proposition 4.3 (Error estimate). Let u be the smooth exact solution of (4.7), and uh be the numerical solution

(2.4) by the DG method using a local space Vh satisfying the condition (3.4) and an upwind numerical fluxdfðUÞjþ1
2
¼ cþjcj

2 U�jþ1
2
þ c�jcj

2 Uþ
jþ1

2

. Then we have
ku� uhkL2 6 CkukHkþ1ðDxÞkþ1=2. ð4:10Þ
Proof. Most of the proof of this proposition is the same as that for the standard piecewise polynomial space
[10]. We denote �e ¼ P hu� uh and e = u � Phu, where Phu is the standard L2 projection of u into the approx-
imation space Vh, and take the test function V ¼ �e in (2.4) to obtain, after straightforward algebraic manip-
ulations similar to the proof of the cell entropy inequalities [14]:
1

2

d

dt

Z
ð�eÞ2dxþ jcj

4

X
j

½�eþj�1=2 � �e�j�1=2�
2
6

cþ jcj
2

X
j

ðe�j�1=2Þ
2 þ jcj � c

2

X
j

ðeþj�1=2Þ
2.
From the result of Lemma 4.2, we have
1

2

d

dt

Z
ð�eÞ2dxþ jcj

4

X
j

½�eþj�1=2 � �e�j�1=2�
2
6 Ckuk2

Hkþ1ðDxÞ2kþ1.
This clearly implies
k�eð.,T ÞkL2 6 CkukHkþ1ðDxÞkþ1=2.
Combing with (3.6) of Proposition 3.2, we obtain
ku� uhkL2 6 kekL2 þ k�ekL2 6 CkukHkþ1ðDxÞkþ1 þ CkukHkþ1ðDxÞkþ1=2
6 CkukHkþ1ðDxÞkþ1=2.
This finishes the proof. h

The result of this proposition can be easily generalized to any one-dimensional linear systems.
Finally, we prove that the transfer of information from one approximation space to another does not

destroy accuracy.

Proposition 4.4 (Error estimate for the projection). If u is the smooth exact solution of (4.7), uh is the numerical

solution (2.4) by the DG method with Vh as in the previous proposition, and Ph is the L2-projection into a new

approximation space �V h satisfying the same condition (3.4), then we have
ku� P huhkL2 6 CkukHkþ1ðDxÞkþ1=2. ð4:11Þ
Proof. First
ku� P huhkL2 6 ku� P hukL2 þ kP hu� P huhkL2 6 ku� P hukL2 þ ku� uhkL2 ;
where the last inequality is because Ph is an L2-projection hence it does not increase the L2-norm. By Prop-
osition 4.3, we have
ku� uhkL2 6 CkukHkþ1ðDxÞkþ1=2.
On the other hand, by (3.6), we have
ku� P hukL2 6 CkukHkþ1ðDxÞkþ1.
Combining the two inequalities finishes the proof. h
4.3. Multi-dimensional case

The DG method with time-varying approximation spaces can be easily generalized from one-dimensional
to multi-dimensional cases. We will comment on the numerical performance of the algorithm in Section 5. As
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to the stability and error estimate, applying the results in Section 3.2 and using similar proofs as in the one-
dimensional case, the results in the previous subsection can be generalized to the multi-dimensional case. We
will state the results for the two-dimensional case and will omit most of the proofs when they are similar to
that in the one-dimensional case.

For a general scalar two-dimensional conservation law:
ut þ f ðuÞx þ gðuÞy ¼ 0; ð4:12Þ
and its linear case:
ut þ cxux þ cyuy ¼ 0; ð4:13Þ

we have the following stability result.

Proposition 4.5 (L2-stability). Let uh be the solution of the DG method for the two-dimensional scalar nonlinear

conservation law (4.12) based on a non-polynomial approximation space Vh. We have
kuhðT Þk2
L2 þHT ðuhÞ 6 ku0k2

L2 ð4:14Þ

with HT(uh) P 0. In particular, if the PDE (4.12) is the linear equation (4.13), then
HT ðuhÞ ¼
Z T

0

X
e2EDx

jc � ne;K j
Z

e
½uhðx; tÞ�2 dCðxÞ
with c = (cx, cy), EDx is the collection of all edges, ne, K is the outward unit normal along the edge e for the element

K, and [uh] = uext(K) � uint(K) denotes the jump of u along the edge.

As in the one-dimensional case, we would need the following approximation property of the finite element
space Vh.

Lemma 4.6 (Approximation result). Assume Vh is a space satisfying the condition (3.9) in Proposition 3.3 in

each cell K 2 X. Let Ph be the L2 projection operator into the space Vh. For any function u(x) 2Wk+1,1(X), there

exists a constant C such that
kP huðxÞ � uðxÞkL1ðKÞ 6 CkukW kþ1;1ðKÞðDxÞkþ1.
Proof. We choose the same vh as that in Proposition 3.3 and will use the same notations. We can decompose u

as
u ¼ vh þ ðu� vhÞ.

Since Ph(vh) = vh, we have
jP hu� uj 6 jP hðu� vhÞj þ ju� vhj.

From Proposition 3.3, we know ju� vhj 6 CkukW kþ1;1ðKÞðDxÞkþ1 for all x 2 K. Now let
P hðu� vhÞ ¼
X

m;nP0;mþn6k

rmnvmn.
From the definition of the L2-projection, we have
Z Z
K
ðP hðu� vhÞ � ðu� vhÞÞvpqdxdy ¼ 0; p P 0; q P 0; p þ q 6 k.
which can be written out as, for all p, q P 0, p + q 6 k,
Z Z
K

X
m;nP0;mþn6k

ðrmnðDxÞmþnÞ vmnðx; yÞ
ðDxÞmþn

vpqðx; yÞ
ðDxÞpþq dxdy ¼

Z Z
K
ðu� vhÞ

vpqðx; yÞ
ðDxÞpþq dxdy
or equivalently, for all p, q P 0, p + q 6 k,
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Z Z
K 0

X
m;nP0;mþn6k

ðrmnðDxÞmþnÞ~vmnð~x; ~yÞ
ðDxÞmþn

~vpqð~x; ~yÞ
ðDxÞpþq d~xd~y ¼

Z Z
K 0

ðu� vhÞ~vpqð~x; ~yÞ
ðDxÞpþq d~xd~y; ð4:15Þ
where ~x ¼ x�xK
Dx ; ~y ¼ y�yK

Dx ;~vmnð~x; ~yÞ ¼ vmnðx; yÞ and K 0 ¼ fð~x; ~yÞ : Dxð~x; ~yÞ þ ðxK ; yKÞ 2 Kg. (4.15) can be con-
cisely written as
MDx : R ¼ h;
where MDx = (mpqmn) with mpqmn ¼
R R

K 0
~vmnð~x;~yÞ
ðDxÞmþn

~vpqð~x;~yÞ
ðDxÞpþq d~xd~y, R = (rmn(Dx)m+n) and h = (hpq) with

hpq ¼
R R

K 0
ðu�vhÞ~vpqð~x;~yÞ
ðDxÞpþq d~xd~y. By (3.9), which implies the boundedness of

~vpqð~x;~yÞ
ðDxÞpþq, and (3.10), we easily obtain
jhpqj 6 CkukW kþ1;1ðKÞðDxÞkþ1
; p P 0; q P 0; p þ q 6 k. ð4:16Þ
We define a norm of the matrix X = (xij) as
kXk1 ¼ max
i;j
jxijj;
and the associated operator norm of fourth order tensors M as
kMk1 ¼ sup
X 6¼0

kM : Xk1

kXk1 .
From (4.16), we have khk1 6 CkukW kþ1;1ðKÞðDxÞkþ1. Again from (3.9), we observe
~vpqð~x; ~yÞ
ðDxÞpþq � apqpq~xp~yq

���� ���� 6 CDx;
therefore the entries of the tensor MDx can be written as
mpqmn ¼
Z Z

K 0
amnmn~xm~ynapqpq~xp~yq d~xd~y þ

Z Z
K 0

~vmnð~x; ~yÞ
ðDxÞmþn

~vpqð~x; ~yÞ
ðDxÞpþq � amnmn~xm~ynapqpq~xp~yq

� �
d~xd~y

¼ fpqmn þ gpqmnðDxÞ;
where fpqmn is independent of Dx and jgpqmn(Dx)j 6 CDx. That is, we have
MDx ¼ F þ GðDxÞ;

where F is independent of Dx and its ‘‘inverse’’ �F exists, as it is the mass matrix of a local basis
fa0000; a1010~x; a0101~y; . . . ; ak0k0~xk; . . . ; a0k0k~ykg with amnmn 6¼ 0 (again, see Appendix A for the discussion of the in-
verse of such tensors), and iG(Dx)i1 6 CDx. The ‘‘inverse’’ of MDx itself always exists for any Dx, because
MDx is the mass matrix of a local basis of Vh.

We need to define a new operation between two fourth order tensors F and G:
ðF � GÞ : X ¼ F : ðG : X Þ for any matrix X .
Setting I = (ipqmn) = (dpmdqn), we have F � I = F = I � F for any fourth order tensor F, and F � �F ¼ �F � F ¼ I if
F has an ‘‘inverse’’ �F (see Appendix A). We can also easily verify from definition that the ‘‘inverse’’ of F�G is
�G � �F , i.e. F � G ¼ �G � �F . Now, considering again (3.9) and the implied boundedness of

vpqðx;yÞ
ðDxÞpþq, we have
kP hðu� vhÞkL1ðKÞ 6 CkRk1 ¼ Ck �MDx : hk1 6 Ck �MDxk1khk1 6 CðDxÞkþ1kukW kþ1;1ðKÞkF þ GðDxÞk1

6 CðDxÞkþ1kukW kþ1;1ðKÞk�F k1kI þ �F � GðDxÞk1

6 CðDxÞkþ1kukW kþ1;1ðKÞk�F k1 1

1� k�F � GðDxÞÞk1

6 CðDxÞkþ1kukW kþ1;1ðKÞk�F k1 1

1� k�F k1CDx
6 CðDxÞkþ1kukW kþ1;1ðKÞ.
When Dx is suitably small, we now have
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kP hu� ukL1ðKÞ 6 kP hðu� vhÞkL1ðKÞ þ ku� vhkL1ðKÞ 6 CkukW kþ1;1ðKÞðDxÞkþ1.
This finishes the proof. h

With this approximation result we can prove the following error estimate.

Proposition 4.7 (Error estimate). Let u be the smooth exact solution of (4.13), and uh be the numerical solution

by the DG method using a local space Vh satisfying the condition (3.9) and an upwind numerical flux. Then we

have
ku� uhkL2 6 CkukW kþ1;1ðDxÞkþ1=2. ð4:17Þ

The result of this proposition can be easily generalized to any two-dimensional symmetric linear

systems.

Finally, we have the same error estimate for the transfer of information between different approximation
spaces.

Proposition 4.8 (Error estimate for projection). If u is the smooth exact solution of (4.13), uh is the numerical

solution by the DG method with Vh as in the previous proposition, and Ph is the L2-projection into a new

approximation space �V h satisfying the same condition (3.9), then we have
ku� P huhkL2 6 CkukW kþ1;1ðDxÞkþ1=2. ð4:18Þ
5. Numerical examples

In this section, we present selected numerical experimental results to demonstrate the performance of our
DG method based on non-polynomial approximation spaces, including the performance of the methods to
determine the parameters in the local spaces. We concentrate our attention mostly on the exponential spaces,
and use uniform Cartesian meshes to simplify the implementation, although the method can be easily applied
on general triangulations. Time discretization is via the TVD Runge–Kutta time discretization [20,12] of order
comparable to the spatial accuracy.
5.1. Shock capturing

We compute the one-dimensional Burgers equation to demonstrate the accuracy and shock capturing
capability of the DG method based on non-polynomial approximation spaces for nonlinear conservation
laws.

Example 5.1. One-dimensional Burgers equation:
ut þ
u2

2

� �
x

¼ 0 ð5:1Þ
with the initial condition
5.1
le 5.1. Errors of Burgers equation at time T = 0.05 with the TVB limiter (M = 40). N uniform cells

Polynomial space P2 Exponential space E2(1)

L2-error Order L1-error Order L2-error Order L1-error Order

1.48E�03 4.82E�03 1.50E�03 5.46E�03
2.32E�04 2.67 9.32E�04 2.37 2.46E�04 2.61 1.02E�03 2.42
3.45E�05 2.75 1.49E�04 2.65 3.95E�05 2.64 1.61E�04 2.66
5.11E�06 2.76 2.16E�05 2.79 5.82E�06 2.76 2.58E�05 2.64
7.05E�07 2.86 3.02E�06 2.84 8.18E�07 2.83 3.93E�06 2.71
9.21E�08 2.94 4.02E�07 2.91 1.08E�07 2.92 5.28E�07 2.90
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uðx; 0Þ ¼ 1

2
þ sin 2px ð5:2Þ
and a periodic boundary condition.

The exact solution is smooth at T = 0.05 and has a well developed shock at T = 0.5. In Table 5.1, we can
see, whereas when the TVB generalized slope limiter is used with a properly chosen constant M = 40 (see [7]
for the definition of this limiter), the DG method is uniformly high order using both P2 and E2(1) spaces. The
solution at T = 0.5 is plotted in Fig. 5.1 and it can be seen that the numerical solutions under the two approx-
imation spaces are almost the same, i.e. the DG method based on the exponential space is able to capture the
shock well.

5.2. One-dimensional problems: parameter adjustment in the local spaces

Example 5.2. We solve the PDE
ut þ ux ¼ 2u; 0 6 x 6 p; ð5:3Þ
x

u

0 0.25 0.5 0.75 1
-0.25

0

0.25

0.5

0.75

1

1.25

1.5 numerical
exact

x

u

0 0.25 0.5 0.75 1
-0.25

0

0.25

0.5

0.75

1

1.25

1.5
numerical
exact

x

u

0 0.25 0.5 0.75 1
-0.25

0

0.25

0.5

0.75

1

1.25

1.5
numerical
exact

x

u

0 0.25 0.5 0.75 1
-0.25

0

0.25

0.5

0.75

1

1.25

1.5
numerical
exact

1. Example 5.1. Solutions of Burgers equation at time T = 0.5. Uniform mesh with 80 cells. Top: no limiters; Bottom: with the TVB
, M = 40. Left: P2 approximation space; Right: E2(1) approximation space. Solid line: the exact solution; Symbols: numerical
ns (one point per cell).
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with a constant initial condition: u(x, 0) = 1 and the boundary condition: u(0, t) = 1. The exact steady state
solution is
Table
Examp

N

10
20
40
80

160

10
20
40
80

160

Table
Examp

Time T

Expon

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

Expon

0.0
1.0
2.0
3.0
4.0
5.0
uðxÞ ¼ e2x. ð5:4Þ

This example has the steady state solution in the approximation space Ek(a), if the method to determine the
local parameter aj is able to catch the correct a value. Notice that the constant initial condition is far from the
final steady state, so the correct identification of a is possible only at a later stage of time evolution.

The numerical solution and parameter adjustment results are shown in Tables 5.2 and 5.3. From Table 5.2,
we can see that by using the exponential space Ek(a), we obtain basically the exact solution modulo round off
errors, which are far better than the solutions obtained by using the standard Pk space. From Table 5.3, we
find the parameters are adjusted gradually as time grows and eventually reach the values fitting the steady state
solution almost exactly.
5.2
le 5.2. L2- and L1-errors at steady state under two different approximation spaces. N uniform cells

Polynomial space P1 Exponential space E1(a)

L2-error Order L1-error Order L2-error L1-error

9.40E�00 3.20E+01 4.41E�11 1.56E�10
1.83E�00 2.36 8.09E�00 1.98 3.61E�12 7.09E�12
4.21E�01 2.12 1.99E�00 2.02 1.30E�11 4.57E�11
1.02E�01 2.05 4.88E�01 2.03 1.19E�10 4.50E�10
2.53E�02 2.01 1.21E�01 2.01 8.90E�10 4.97E�09

Polynomial space P2 Exponential space E2(a)

L2-error Order L1-error Order L2-error L1-error

3.38E�01 1.30E�00 3.33E�11 6.91E�11
4.16E�02 3.02 1.79E�01 2.86 8.17E�11 1.75E�10
5.14E�03 3.02 2.35E�02 2.93 6.23E�11 3.53E�10
6.38E�04 3.01 3.01E�03 2.96 1.26E�11 4.12E�11
7.94E�05 3.01 3.82E�04 2.98 5.29E�11 4.71E�10

5.3
le 5.2. The parameters aj for each cell at time T. N = 10 uniform cells

Parameters found at time T for each cell Ij

1 2 3 4 5 6 7 8 9 10

ential space E1(a)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.34 6.08 6.37 4.18 2.31 1.28 0.90 0.71 0.58 0.49
2.01 2.02 1.28 2.10 6.61 5.56 3.94 2.48 1.46 0.95
2.00 2.00 2.01 2.09 1.81 0.57 3.99 6.28 5.19 3.84
2.00 2.00 2.00 2.00 1.99 2.06 2.13 1.47 0.30 4.87
2.00 2.00 2.00 2.00 2.00 2.00 1.99 2.00 2.14 2.09
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 1.97
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

ential space E2(a)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.07 0.11 11.0 7.94 2.42 1.39 0.95 0.73 0.60 0.50
2.00 2.00 1.94 2.27 �0.57 10.3 8.39 3.12 1.44 1.01
2.00 2.00 2.00 2.00 2.02 1.90 2.46 �1.22 9.70 8.82
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.03 1.85 2.56
2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00
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Example 5.3. We solve the PDE
Table
Examp

N

10
20
40
80

160

10
20
40
80

160

Table
Examp

Time T

Expon

0.0
0.1
1.0
2.0
3.0
4.0

Expon

0.0
0.1
1.0
2.0
3.0
ut þ ux ¼ 2xu; 0 6 x 6 1; ð5:5Þ

with a constant initial condition: u(x, 0) = 1 and the boundary condition: u(0, t) = 1. The exact steady state
solution is
uðxÞ ¼ ex2

. ð5:6Þ

This example has the steady state solution which is not in the approximation space Ek(a) for any a, but may be
approximated better locally by Ek(a) with a suitably chosen aj than by the standard polynomial space Pk.
Notice that the constant initial condition is again far from the final steady state, so as before the correct iden-
tification of a is possible only at a later stage of time evolution.

The numerical solution and parameter adjustment results are shown in Tables 5.4 and 5.5. From Table 5.4,
we can see that the exponential space Ek(a) and the standard polynomial space Pk both have the same conver-
gence rate in L2 and L1 norms. However, the errors of exponential space are much smaller than those of the
polynomial space, indicating that we have obtained good parameters in the exponential space so that better
5.4
le 5.3. L2- and L1-errors at steady state under two different approximation spaces. N uniform cells

Polynomial space P1 Exponential space E1(a)

L2-error Order L1-error Order L2-error Order L1-error Order

4.16E�03 2.09E�02 1.92E�03 7.67E�03
1.03E�03 2.01 5.55E�03 1.91 4.74E�04 2.02 1.95E�03 1.98
2.55E�04 2.01 1.43E�03 1.96 1.18E�04 2.01 4.90E�04 1.99
6.34E�05 2.01 3.63E�04 1.98 2.93E�05 2.01 1.23E�04 1.99
1.58E�05 2.00 9.15E�05 1.99 7.32E�06 2.00 3.07E�05 2.00

Polynomial space P2 Exponential space E2(a)

L2-error Order L1-error Order L2-error Order L1-error Order

9.93E�05 5.55E�04 2.45E�06 1.02E�05
1.23E�05 3.01 7.50E�05 2.89 2.60E�07 3.23 1.19E�06 3.10
1.53E�06 3.01 9.75E�06 2.94 1.84E�08 3.82 1.43E�07 3.05
1.91E�07 3.00 1.24E�06 2.98 2.04E�09 3.17 1.73E�08 3.04
2.39E�08 3.00 1.57E�07 2.98 2.41E�10 3.08 2.14E�09 3.02

5.5
le 5.3. The parameters aj for each cell at time T. N = 10 uniform cells

Parameters found at time T for each cell Ij

1 2 3 4 5 6 7 8 9 10

ential space E1(a)

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.65 1.63 1.53 1.34 1.23 1.13 1.05 0.98 0.92 0.87
0.13 0.33 0.53 0.73 0.94 1.14 1.32 1.49 1.86 2.58
0.13 0.33 0.53 0.73 0.94 1.14 1.33 1.54 1.74 1.94
0.13 0.33 0.53 0.73 0.94 1.14 1.34 1.54 1.74 1.94
0.13 0.33 0.53 0.73 0.94 1.14 1.34 1.54 1.74 1.94

ential space E2(a)

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6.62 3.06 1.90 1.38 1.24 1.15 1.07 1.00 0.95 0.90
0.10 0.30 0.50 0.70 0.90 1.10 1.32 1.49 0.93 8.81
0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90
0.10 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90
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approximations are obtained to the exact solution. Table 5.5 shows that the parameters are adjusted gradually

as time grows and eventually reach values fitting the steady state solution well (since ex2 ¼ ex2
j e2xjðx�xjÞeðx�xjÞ2 ,

where ex2
j is a constant and eðx�xjÞ2 � 1, the best fitting parameter is 2xj in cell Ij).

Example 5.4. We solve the boundary layer problem:
Table
Examp

N

10
20
40
80

10
20
40
80
ut þ ux ¼ euxx; 0 6 x 6 0:5; ð5:7Þ
where e = 0.01, with a linear initial condition: u(x, 0) = 2x and the boundary conditions u(0, t) = 0 and
u(0.5, t) = 1. The exact steady state solution is
uðxÞ ¼ ex=e � 1

e1=2e � 1
. ð5:8Þ
This example has the steady state solution which has a sharp boundary layer at the right boundary, which can
be approximated by the space Ek(a) with suitably chosen a much better than by the standard polynomial space
Pk. Again, the initial condition is far from the final steady state, hence the correct identification of a is possible
only at a later stage of time evolution.

The numerical solution and parameter adjustment results are given in Tables 5.6 and 5.7. In Table 5.6, we
can see that by using the exponential space Ek(a), we obtain basically the exact solution modulo round off
errors, which are far better than the solutions obtained by using the standard Pk space. From Table 5.7,
we find the parameters are adjusted gradually as time grows and eventually reach the value 1/e = 100 fitting
the steady state solution almost exactly.

Example 5.5. We solve the PDE
ut ¼ ðpðxÞuÞx þ qðxÞu. ð5:9Þ
1. p(x) = x2, q(x) = �x2ex � 2x + 1 and 1 6 x 6 2 with the constant initial condition: u(x, 0) = 2 and the
boundary condition: u(2, t) = 2. The exact steady state solution is uðxÞ ¼ 2eexþ1=x�e2�1=2. Table 5.8 gives
the results.

2. p(x) = �x, q(x) = xcosx + x2 + 1 and 1 6 x 6 2 with the constant initial condition: u(x, 0) = 2 and the
boundary condition: u(1, t) = 2. The exact steady state solution is uðxÞ ¼ 2esin xþx2=2�sin 1�1=2. The results
are given in Table 5.9.

From Tables 5.8 and 5.9, we can clearly observe that the exponential space Ek(a) and the standard poly-
nomial space Pk both have the same convergence rate in L2 and L1 norms. However, the errors of exponential
space are much smaller than those of the polynomial space, indicating that we have obtained good parameters
in the exponential space so that better approximations are obtained to the exact solution.
5.6
le 5.4. L2- and L1-errors at steady state under two different approximation spaces. N uniform cells

Polynomial space P1 Exponential space E1(a)

L2-error Order L1-error Order L2-error L1-error

3.14E�02 3.55E�01 2.35E�14 1.68E�13
1.45E�02 1.11 2.12E�01 0.74 6.82E�14 5.22E�13
5.14E�03 1.50 1.03E�01 1.04 1.51E�13 1.45E�12
1.52E�03 1.76 3.73E�02 1.47 3.78E�13 2.92E�12

Polynomial space P2 Exponential space E2(a)

L2-error Order L1-error Order L2-error L1-error

1.20E�02 1.24E�01 5.97E�14 4.51E�13
3.13E�03 2.27 4.56E�02 1.70 1.09E�14 7.61E�14
5.51E�04 2.71 1.10E�02 2.17 2.76E�14 2.15E�13
7.87E�05 2.91 1.98E�03 2.53 2.80E�15 3.73E�14



Table 5.8
Example 5.5. L2- and L1-errors at steady state under two different approximation spaces. N uniform cells

N Polynomial space P1 Exponential space E1(a)

L2-error Order L1-error Order L2-error Order L1-error Order

5 4.64E�02 2.32E�01 7.00E�03 2.73E�02
10 1.43E�02 1.70 9.45E�02 1.30 2.07E�03 1.76 1.20E�02 1.19
20 3.94E�03 1.86 3.12E�02 1.60 5.58E�04 1.89 4.05E�03 1.57
40 1.03E�03 1.94 9.06E�03 1.78 1.45E�04 1.94 1.18E�03 1.78
80 2.62E�04 1.98 2.45E�03 1.89 3.68E�05 1.98 3.19E�04 1.89

Polynomial space P2 Exponential space E2(a)

L2-error Order L1-error Order L2-error Order L1-error Order

5 6.57E�03 3.29E�02 1.09E�04 4.59E�04
10 1.03E�03 2.68 7.00E�03 2.23 1.48E�05 2.88 9.18E�05 2.32
20 1.40E�04 2.87 1.17E�03 2.58 1.98E�06 2.90 1.52E�05 2.59
40 1.81E�05 2.95 1.70E�04 2.78 2.58E�07 2.94 2.22E�06 2.78
80 2.30E�06 2.98 2.30E�05 2.89 3.29E�08 2.97 3.01E�07 2.88

Table 5.7
Example 5.4. The parameters aj for each cell at time T. N = 10 uniform cells

Time T Parameters found at time T for each cell Ij

1 2 3 4 5 6 7 8 9 10

Exponential space E1(a)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 62.7 51.8 47.4 42.9 43.1 30.3 74.5 99.9 100.0 100.0
1.5 64.6 43.6 94.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
2.0 100.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3.0 100.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Exponential space E2(a)

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.0 78.9 58.2 51.4 47.1 44.0 43.5 57.5 97.7 100.0 100.0
1.5 81.3 69.1 89.4 99.3 100.0 100.0 100.0 100.0 100.0 100.0
2.0 102.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3.0 102.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 5.9
Example 5.5. L2- and L1-errors at steady state under two different approximation spaces. N uniform cells

N Polynomial space P1 Exponential space E1(a)

L2-error Order L1-error Order L2-error Order L1-error Order

5 3.59E�02 1.45E�01 7.94E�04 3.50E�03
10 8.47E�03 2.08 3.63E�02 2.00 1.75E�04 2.18 1.06E�03 1.72
20 2.07E�03 2.03 9.06E�03 2.00 4.16E�05 2.07 2.89E�04 1.87
40 5.11E�04 2.02 2.26E�03 2.00 1.02E�05 2.03 7.55E�05 1.94
80 1.27E�04 2.01 5.65E�04 2.00 2.52E�06 2.02 1.93E�05 1.97

Polynomial space P2 Exponential space E2(a)

L2-error Order L1-error Order L2-error Order L1-error Order

5 9.18E�04 3.88E�03 5.83E�05 2.88E�04
10 1.12E�04 3.03 5.15E�04 2.91 7.25E�06 3.01 4.18E�05 2.78
20 1.39E�05 3.02 6.66E�05 2.95 8.98E�07 3.01 5.59E�06 2.90
40 1.72E�06 3.01 8.47E�06 2.98 1.11E�07 3.01 7.21E�07 2.95
80 2.15E�07 3.00 1.07E�06 2.98 1.65E�08 2.75 1.05E�07 2.78
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5.3. Helmholtz equation

Example 5.6. We consider the equation:
Table
Examp

N

5
10
20
40
80
ut ¼ uxx þ ku ð5:10Þ

and we are interested in the steady state solution of (5.10) which is the one-dimensional Helmholtz equation.
When k > 0, the exact solution can be written in the form of c1 sin

ffiffiffi
k
p

xþ c2 cos
ffiffiffi
k
p

x. The trigonometric space
T kð

ffiffiffi
k
p
Þ given by (3.3) can be used in the LDG method to obtain almost exact numerical solution. When k < 0,

the exact solution can be written as c1e
ffiffiffiffi
�k
p

x þ c2e�
ffiffiffiffi
�k
p

x. Usually, the exact solution is dominated by one term,
either c1e

ffiffiffiffi
�k
p

x or c2e�
ffiffiffiffi
�k
p

x. The time-varying exponential space Ek(a) can be applied in this case.

1. k = 4 with a linear initial condition:
uðx; 0Þ ¼ 4

p
xþ 1; 0 6 x 6 p=4; ð5:11Þ

and the boundary conditions u(0, t) = 1 and u(p/4, t) = 2. The exact steady state solution is

uðxÞ ¼ 2 sin 2xþ cos 2x. ð5:12Þ
The numerical results are shown in Table 5.10. We can see that the exact solution (modulo round off errors)
is obtained by the LDG method using the approximation space T2(2).

2. k = �9 with a linear initial condition:
uðx; 0Þ ¼ ðe�3 þ 2e3 � 3Þxþ 3; 0 6 x 6 1; ð5:13Þ
and the boundary conditions u(0, t) = 3 and u(1, t) = e�3 + 2e3. The exact steady state solution is

uðxÞ ¼ e�3x þ 2e3x. ð5:14Þ
The numerical results are given in Table 5.11. We can see that the exponential space Ek(a) and the standard
polynomial space Pk both have the same convergence rate in L2 and L1 norms. However, the errors of
exponential space are much smaller than those of the polynomial space, indicating that we have obtained
good parameters in the exponential space so that better approximations are obtained to the exact solution.
5.4. Two-dimensional problems

The two-dimensional numerical procedure follows that in one dimension. We observe that the identification
of the optimal parameters in our non-polynomial DG method is more time consuming than the one-dimen-
sional case. This is due partly to the increased cost of the base algorithm in two dimensions, and partly to the
fact that more parameters (e.g. two instead of one for the exponential spaces) must be identified. We have
therefore made the following two modifications to speed up the computation. When using Ek(a, b) space to
solve two-dimensional problems, we first solve the problems using DG method with polynomial Pk space
to reach steady state and use this result as the initial condition. We then apply the parameter adjustment
method, namely the method to fit the parameters described in Section 4.1 for the one-dimensional case, with
apparent modification for the two-dimensional case, to evolve in the Ek(a, b) space with adjusted a and b
towards steady states. In this stage we have not used the logarithm in the least square procedure. This makes
5.10
le 5.6. L2- and L1-errors at steady state under two different approximation spaces. N uniform cells

Polynomial space P2 Trigonometric space T2(2)

L2-error Order L1-error Order L2-error L1-error

2.50E�04 1.44E�03 1.66E�15 4.88E�15
2.51E�05 3.30 1.28E�04 3.02 1.38E�15 5.33E�15
2.72E�06 3.19 1.57E�05 3.03 4.14E�15 2.09E�14
3.15E�07 3.11 1.95E�06 3.01 1.66E�14 9.06E�14
3.78E�08 3.06 2.43E�07 3.00 2.94E�15 1.55E�14



Table 5.11
Example 5.6. L2- and L1-errors under two different approximation spaces. N uniform cells

N Polynomial space P2 Exponential space E2(a)

L2-error Order L1-error Order L2-error Order L1-error Order

5 2.98E�02 1.43E�01 1.98E�03 7.16E�03
10 3.51E�03 3.09 2.21E�02 2.69 2.44E�04 3.02 9.31E�04 2.94
20 3.87E�04 3.18 3.07E�03 2.85 3.04E�05 3.00 1.16E�04 3.00
40 4.26E�05 3.18 4.06E�04 2.92 3.80E�06 3.00 1.44E�05 3.00
80 4.83E�06 3.14 5.22E�05 2.96 4.75E�07 3.00 1.79E�06 3.00
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the least square procedure more costly for each step but it seems to allow us to reach the numerically optimal
parameters much faster.

Example 5.7. We consider the following two-dimensional boundary layer problem:
Table
Examp

Nx · N

10 · 10
20 · 20
40 · 40
80 · 80

10 · 10
20 · 20
40 · 40
80 · 80
ut þ ux þ uy ¼ exuxx þ eyuyy ; 0 6 x; y 6 1. ð5:15Þ
1. ex = ey = 0.05 with an initial condition
uðx; y; 0Þ ¼ 1 ð5:16Þ
and the boundary conditions u(x, 0, t) = e20x�40, u(x, 1, t) = e20x�20, u(0, y, t) = e20y�40 and u(1, y, t) =
e20y�20. The exact steady state solution is u(x, y) = e20(x+y�2). The numerical results are given in Table 5.12.

2. ex = 0.05, ey = 0.5 with an initial condition
uðx; y; 0Þ ¼ 1 ð5:17Þ
and the boundary conditions u(x, 0, t) = e20x�20, u(x, 1, t) = e20x�18, u(0, y, t) = e2y�20 and u(1, y, t) = e2y.
The exact steady state solution is u(x, y) = e20x+2y�20. The numerical results are given in Table 5.13.

We can see clearly that, as in the one-dimensional case, by using the exponential space Ek(a, b), our method
can identify automatically the correct values of a and b based on the numerical solution, which leads to basi-
cally the exact solution modulo round off errors, which are far better than the solutions obtained by using the
standard Pk space.

Example 5.8. We consider the equation:
ut ¼ uxx þ uyy þ ku; 0 6 x; y 6 1 ð5:18Þ

and solve the steady state solution of (5.18) which is the two-dimensional Helmholtz equation.
5.12
le 5.7. L2- and L1-errors at steady state under two different approximation spaces. Nx · Ny uniform cells

y Polynomial space P1 Exponential space E1(a, b)

L2-error Order L1-error Order L2-error L1-error

7.02E�03 3.60E�01 9.23E�11 4.42E�10
2.24E�03 1.65 1.69E�01 1.09 1.11E�11 7.39E�10
6.01E�04 1.90 6.00E�02 1.65 1.15E�12 9.38E�11
1.53E�04 2.97 1.81E�02 1.73 8.66E�12 3.10E�10

Polynomial space P2 Exponential space E2(a, b)

L2-error Order L1-error Order L2-error L1-error

2.13E�03 1.25E�01 8.81E�13 4.42E�11
3.54E�04 2.59 3.22E�02 1.96 5.28E�13 3.41E�11
4.81E�05 2.90 5.99E�03 2.43 2.89E�13 2.40E�11
6.15E�06 2.97 9.21E�04 2.70 8.66E�12 3.10E�10



Table 5.13
Example 5.7. L2- and L1-errors at steady state under two different approximation spaces. Nx · Ny uniform cells

Nx · Ny Polynomial space P1 Exponential space E1(a, b)

L2-error Order L1-error Order L2-error L1-error

10 · 10 7.15E�02 1.16E�00 1.44E�12 1.74E�10
20 · 20 2.08E�02 1.78 4.29E�01 1.44 8.63E�12 1.30E�10
40 · 40 5.44E�03 1.93 1.32E�01 1.70 3.07E�12 7.03E�10
80 · 80 1.38E�03 1.98 3.70E�02 1.83 8.87E�12 1.80E�10

Polynomial space P2 Exponential space E2(a, b)

L2-error Order L1-error Order L2-error L1-error

10 · 10 1.22E�02 2.06E�01 1.51E�11 1.74E�10
20 · 20 1.81E�03 2.75 4.00E�02 2.34 1.82E�11 2.82E�10
40 · 40 2.37E�04 2.93 6.31E�03 2.66 2.87E�12 6.71E�11
80 · 80 3.00E�05 2.98 8.88E�04 2.83 1.65E�11 3.73E�10

Table 5.14
Example 5.8. L2- and L1-errors at steady state under two different approximation spaces. Nx · Ny uniform cells

Nx · Ny Polynomial space P1 Exponential space E1(a, b)

L2-error Order L1-error Order L2-error Order L1-error Order

10 · 10 7.36E00 1.06E02 2.01E�01 1.28E00
20 · 20 1.85E00 1.99 2.92E01 1.86 5.05E�02 1.99 3.39E�01 1.92
40 · 40 4.63E�01 2.00 7.68E00 1.93 1.26E�02 2.00 8.70E�02 1.96
80 · 80 1.16E�01 2.00 1.97E00 1.96 3.16E�03 2.00 2.21E�02 1.98

Polynomial space P2 Exponential space E2(a, b)

L2-error Order L1-error Order L2-error Order L1-error Order

10 · 10 2.96E�01 5.37E00 9.11E�03 5.98E�02
20 · 20 3.72E�02 2.99 7.47E�01 2.85 1.15E�03 2.99 7.89E�03 2.92
40 · 40 4.66E�03 3.00 9.85E�02 2.92 1.43E�04 3.01 1.01E�03 2.97
80 · 80 5.82E�04 3.00 1.26E�02 2.97 1.79E�05 3.00 1.30E�04 2.96
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We set k = �13 and choose an initial condition u(x, y, 0) = 1 and the boundary conditions u(x, 0, t) =
6(8e2x + e�2x), u(x, 1, t) = (5e3 + e�3)(8e2x + e�2x), u(0, y, t) = 9(5e3y + e�3y) and u(1, y, t) = (8e2 + e�2)
(5e3y + e�3y). The exact steady state solution is u(x, y) = (8e2x + e�2x)(5e3y + e�3y). The numerical results
are given in Table 5.14. This time, since the exact solution is not in the finite element space Ek(a, b) no matter
how we choose the parameters, we cannot expect errors at the round-off level. However, we can see that our
method automatically choose suitable parameters in the exponential space Ek(a, b), since the magnitude of the
errors are much smaller than those from the regular DG method with the same meshes.

6. Concluding remarks

We have designed and tested different approximation spaces for the discontinuous Galerkin (DG) and the
local discontinuous Galerkin (LDG) methods. Our work demonstrates the flexibility of the DG and LDG
methods with finite element spaces. We have formulated conditions under which the approximation results
similar to those of polynomial spaces can be proven, and verified that several approximation spaces including
the exponential spaces and trigonometric spaces satisfy these conditions. Stability and error estimates for the
DG methods based on non-polynomial spaces, similar to those for the DG methods based on standard poly-
nomial spaces, have been proven under the these conditions. We have also investigated methods to determine
the parameters in the local approximation spaces dynamically, and have demonstrated through numerical
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examples the effectiveness of these methods to identify parameters suitable for the approximated solutions.
Numerical examples indicate that, when the local approximation spaces are well chosen, the DG approxima-
tion can be much more accurate than that using the standard polynomial spaces.

The main objective of this paper is to demonstrate the flexible approach to the solution space for a discon-
tinuous Galerkin method. For practical problems with complicated solutions, it is certainly a challenge to
identify the suitable approximation spaces with an efficient numerical procedure. If an optimal approximation
space is not correctly identified, one may gain little or even no improvement in accuracy over standard discon-
tinuous Galerkin method using standard polynomials spaces. However, the order of accuracy will not be lost if
the space satisfies certain sufficient conditions spelled out in this paper.

In the future we plan to study more systematically the issue of identifying optimal parameters in the local
spaces dynamically, especially for multi-dimensional problems. We also plan to study other local approxima-
tion spaces, including those with multi-scale basis functions [1,13], in order to solve other PDEs including
those in the multi-scale context.

Appendix A

In this appendix, we verify that the approximation spaces Ek(a) given by (3.1), the trigonometric spaces
Tk(a) given by (3.3), and their two-dimensional versions (3.7) and (3.8), do satisfy the conditions (3.4) in one
dimension or (3.9) in multi-dimensions. We also establish the existence of the ‘‘inverse’’ tensor �A of a fourth
order tensor A.
A.1. The Ek(a) space

We choose a local basis vi ¼ eajðx�xjÞðx� xjÞi in this case. We then have
eajðx�xjÞ

eajðx�xjÞðx� xjÞ
. . .

eajðx�xjÞðx� xjÞk

0BBB@
1CCCA ¼

1 aj . . .
ak

j

k!

0 1 . . .
ak�1

j

ðk�1Þ!
. . . . . . . . . . . .

0 0 . . . 1

0BBBBB@

1CCCCCA
1

ðx� xjÞ
. . .

ðx� xjÞk

0BBB@
1CCCAþ

akþ1
j

ðkþ1Þ!
ak

j

k!

. . .

aj

0BBBBB@

1CCCCCAðx� xjÞkþ1 þOððDxjÞkþ2Þ.
Therefore, we have
A ¼

1 aj . . .
ak

j

k!

0 1 . . .
ak�1

j

ðk�1Þ!
. . . . . . . . . . . .

0 0 . . . 1

0BBBBB@

1CCCCCA; b ¼ 2

jajjkþ1

ðkþ1Þ!

jajjk
k!

. . .

jajj

0BBBBB@

1CCCCCA.
It is easy to obtain
A�1 ¼

1 �aj . . .
ð�ajÞk

k!

0 1 . . .
ð�ajÞk�1

ðk�1Þ!
. . . . . . . . . . . .

0 0 . . . 1

0BBBB@
1CCCCA
and we can observe that both A�1 and b are independent of Dxj. Hence condition (3.4) is satisfied.

A.2. The T1(a) and T2(a) spaces

We set the basis functions as v0 = 1, v1 = sinaj(x � xj) and v2 = 1 � cosaj(x � xj). We have
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1

sin ajðx� xjÞ
1� cos ajðx� xjÞ

0B@
1CA ¼ 1 0 0

0 aj 0

0 0 a2
j=2

0B@
1CA 1

ðx� xjÞ
ðx� xjÞ2

0B@
1CAþ 0

� a3
j

6

0

0B@
1CAðx� xjÞ3 þOððDxjÞ4Þ.
For the T1(a) space, we have A ¼ 1 0
0 aj

� �
and b ¼ 0

jajj3
3

� �
. From which we obtain A�1 ¼ 1 0

0 1=aj

� �
. For

the T2(a) space, we have A ¼
1 0 0
0 aj 0
0 0 a2

j=2

0@ 1A and b ¼
0
jajj3

3

jajj

0@ 1A. Then we obtain A�1 ¼
1 0 0
0 1=aj 0
0 0 2=a2

j

0@ 1A.

We can see that both A�1 and b are independent of Dxj for both T1(a) and T2(a) spaces. Therefore condition
(3.4) is satisfied. The verification for the general Tk(a) case with k > 2 is similar.
A.3. The ‘‘inverse’’ tensor �A of a fourth order tensor A

We need to create a bijective mapping L from upper-triangular fourth order tensors to matrices. The map-
ping L is defined as
LA ¼ B; bij ¼ amnpq
with m, n P 0, m + n 6 k, p, q P 0, p + q 6 k, i = (m2 + n2 + 2mn + m + 3n)/2 and j = (p2 + q2 + 2pq +
p + 3q)/2.

This mapping can be easily verified to be both injective and surjective.
Then we can obtain B�1 if B is invertible and let
�A ¼ L�1B�1.
For the tensor A in the proof of Proposition 3.3, the matrix B can be easily verified to be invertible.
We can also easily verify that for any matrix b and c, if b : A = c holds, then c : �A ¼ b is valid.
A.4. The Ek(a, b) space

We take
vmn ¼ eaiðx�xiÞþbjðy�yjÞðx� xiÞmðy � yjÞ
n
; mþ n 6 k
in this case. We know that
vmn ¼
X

m6p;n6q;pþq6k

ap�m
i bq�n

j

ðp � mÞ!ðq� nÞ! ðx� xiÞpðy � yjÞ
q þ

X
pþq¼kþ1

ap�m
i bq�n

j

ðp � mÞ!ðq� nÞ! ðx� xiÞpðy � yjÞ
q

þOððDxÞkþ1Þ.
Hence we have A = (amnpq) with
amnpq ¼
ap�m

i bq�n
j

ðp�mÞ!ðq�nÞ! ; m 6 p; n 6 q; p þ q 6 k;

0; otherwise.

(

and b = (bmn) with bmn ¼
ðjaiþbjjÞkþ1�m�n

ðkþ1�m�nÞ! . Then we obtain �A = (�amnpq) with
�amnpq ¼
ð�aiÞp�mð�bjÞq�n

ðp�mÞ!ðq�nÞ! ; m 6 p; n 6 q; p þ q 6 k;

0; otherwise.

(

We can see that both �A and b are independent of Dx.



322 L. Yuan, C.-W. Shu / Journal of Computational Physics 218 (2006) 295–323
A.5. The T1(a, b) and T2(a, b) spaces

We set
v00 ¼ 1;

v10 ¼ sin aiðx� xiÞ;
v01 ¼ sin bjðy � yjÞ;
v20 ¼ 1� cos aiðx� xiÞ;
v11 ¼ sin aiðx� xiÞ sin bjðy � yjÞ;
v02 ¼ 1� cos bjðy � yjÞ

8>>>>>>>><>>>>>>>>:

in this case. For the T1(a, b) space, we have A = (amnpq) with
amnpq ¼

a0000 ¼ 1;

a1010 ¼ ai;

a0101 ¼ bj;

0; otherwise.

8>>><>>>:

and b ¼ 0 jai j3

3
jbjj3

3
0

 !
. Then we obtain �A = (�amnpq) with
amnpq ¼

a0000 ¼ 1;

a1010 ¼ 1=ai;

a0101 ¼ 1=bj;

0; otherwise.

8>>><>>>:

For the T2(a, b) space, we have A = (amnpq) with
amnpq ¼

a0000 ¼ 1;

a1010 ¼ ai;

a0101 ¼ bj;

a2020 ¼ a2
i =2;

a1111 ¼ aibj;

a0202 ¼ b2
j=2;

0; otherwise.

8>>>>>>>>>>><>>>>>>>>>>>:

and b ¼

0 jaij3
3

jaij
jbjj3

3

jaibjj3

9
0

jbjj 0 0

0B@
1CA. Then we obtain �A = (�amnpq) with
amnpq ¼

a0000 ¼ 1;

a1010 ¼ 1=ai;

a0101 ¼ 1=bj;

a2020 ¼ 2=a2
i ;

a1111 ¼ 1=ðaibjÞ;
a0202 ¼ 2=b2

j ;

0; otherwise.

8>>>>>>>>>>><>>>>>>>>>>>:

We can see both �A and b are independent of Dx for both T1(a, b) and T2(a, b) spaces.
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